找回密码
 用户注册

QQ登录

只需一步,快速开始

查看: 7131|回复: 1

ACE_Message_Block-----ACE消息的存储

[复制链接]
发表于 2012-2-29 00:19:06 | 显示全部楼层 |阅读模式
ACE_Message_Block在Ace中用来表示消息的存放空间,可用做网络通信中的消息缓冲区,使用非常频繁,下面将在如下方简单的介绍一下ACE_Message_Block相关功能。使用案例:[cpp] view plaincopyprint?


  • ACE_Message_Block * head = NULL;
  • ACE_NEW_RETURN(head, ACE_Message_Block( sizeof( void * ) ), -1 );
  • ACE_Message_Block *msg = head;
  • ACE_OS::memcpy( msg->wr_ptr(), &pMsg,  sizeof( void *) );
  • msg->wr_ptr(sizeof( void *));

    ACE_Message_Block * head = NULL;    ACE_NEW_RETURN(head, ACE_Message_Block( sizeof( void * ) ), -1 );    ACE_Message_Block *msg = head;    ACE_OS::memcpy( msg->wr_ptr(), &pMsg,  sizeof( void *) );    msg->wr_ptr(sizeof( void *)); 下面是转自网络:1。创建消息块 创建消息块的方式比较灵活,常用的有以下几种方式 : 1。直接给消息块分配内存空间创建。     ACE_Message_Block *mb =new ACE_Message_Block (30); 2。共享底层数据块创建。     char buffer[100];
    ACE_Message_Block *mb = new ACE_Message_Block (buffer,30);
这种方式共享底层的数据块,被创建的消息块并不拷贝该数据,也不假定自己拥有它的所有权。在消息块mb被销毁时,相关联的数据缓冲区data将不会被销毁。这是有意义的:消息块没有拷贝数据,因此内存也不是它分配的,这样它也不应该负责销毁它。3。通过duplicate()函数从已有的消息块中创建副本。     ACE_Message_Block *mb =new ACE_Message_Block (30);
    ACE_Message_Block *mb2 = mb->duplicate();
这种方式下,mb2和mb共享同一数据空间,使用的是ACE_Message_Block的引用计数机制。它返回指向要被复制的消息块的指针,并在内部增加内部引用计数。4。通过clone()函数从已有的消息块中复制。     ACE_Message_Block *mb =new ACE_Message_Block (30);
    ACE_Message_Block *mb2 = mb->clone();
clone()方法实际地创建整个消息块的新副本,包括它的数据块和附加部分;也就是说,这是一次"深拷贝"。2。释放消息块 一旦使用完消息块,程序员可以调用它的release()方法来释放它。

  • 如果消息数据内存是由该消息块分配的,调用release()方法就也会释放此内存。
  • 如果消息块是引用计数的,release()就会减少计数,直到到达0为止;之后消息块和与它相关联的数据块才从内存中被移除。
  • 如果消息块是通过共享已分配的底层数据块创建的,底层数据块不会被释放。
无论消息块是哪种方式创建的,只要在使用完后及时调用release()函数,就能确保相应的内存能正确的释放。 3。从消息块中读写数据 ACE_Message_Block提供了两个指针函数以供程序员进行读写操作,rd_ptr()指向可读的数据块地址,wr_ptr()指向可写的数据块地址,默认情况下都执行数据块的首地址。下面的例子简单了演示它的使用方法。#include"ace/Message_Queue.h"
#include "ace/OS.h"

int main(int argc,char *argv[])
{
    ACE_Message_Block *mb = new ACE_Message_Block (30);
    ACE_OS::sprintf(mb->wr_ptr(),"%s","hello");
    ACE_OS::printf("%s\n",mb->rd_ptr ());
    mb->release();
    return 0;
}
注意:这两个指针所指向的位置并不会自动移动,在上面的例子中,函数执行完毕后,执行的位置仍然是最开始的0,而不是最新的可写位置5,程序员需要通过wr_ptr(5)函数手动移动写指针的位置。4。数据的拷贝 一般的数据的拷贝可以通过函数来实现数据的拷贝,copy()还会保证wr_ptr()的更新,使其指向缓冲区的新末尾处。 下面的例子演示了copy()函数的用法。     mb->copy("hello");
    mb->copy("123",4);
注意:由于c++是以'\0'作为字符串结束标志的,对于上面的例子,底层数据块中保存的是"hello\0123\0",而用ACE_OS::printf("%s\n",mb->rd_ptr ());打印出来的结果是"hello",使用copy函数进行字符串连接的时候需要注意。5。其它常用函数

  • length()    返回当前的数据长度
  • next()    获取和设置下一个ACE_Message_Block的链接。(用来建立消息队列非常有用)
  • space()    获取剩余可用空间大小
  • size()    获取和设置数据存储空间大小。
下面是源代码,可以直接调用,对数据块操作:
[cpp] view plaincopyprint?


  • // -*- C++ -*-

  • //==========================================================================
  • /**
  • *  @file    Message_Block.h
  • *
  • *  $Id: Message_Block.h 93359 2011-02-11 11:33:12Z mcorino $
  • *
  • *  @author Douglas C. Schmidt <schmidt@cs.wustl.edu>
  • */
  • //==========================================================================

  • #ifndef ACE_MESSAGE_BLOCK_H
  • #define ACE_MESSAGE_BLOCK_H

  • #include /**/ "ace/pre.h"

  • #include "ace/config-lite.h"
  • #include /**/ "ace/ACE_export.h"

  • #if !defined (ACE_LACKS_PRAGMA_ONCE)
  • # pragma once
  • #endif /* ACE_LACKS_PRAGMA_ONCE */

  • #include "ace/Default_Constants.h"
  • #include "ace/Global_Macros.h"
  • #include "ace/Time_Value.h"

  • ACE_BEGIN_VERSIONED_NAMESPACE_DECL

  • // Forward declaration.
  • class ACE_Allocator;
  • class ACE_Data_Block;
  • class ACE_Lock;


  • /**
  • * @class ACE_Message_Block
  • *
  • * @brief Stores messages for use throughout ACE (particularly
  • * in an ACE_Message_Queue).
  • *
  • * An ACE_Message_Block is modeled after the message data
  • * structures used in System V STREAMS.  Its purpose is to
  • * enable efficient manipulation of arbitrarily large messages
  • * without incurring much memory copying overhead.  Here are the
  • * main characteristics of an ACE_Message_Block:
  • * - Contains a pointer to a reference-counted
  • *   ACE_Data_Block, which in turn points to the actual data
  • *   buffer.  This allows very flexible and efficient sharing of
  • *   data by multiple ACE_Message_Block objects.
  • * - One or more ACE_Message_Blocks can be linked to form a
  • *    ``fragment chain.''
  • * - ACE_Message_Blocks can be linked together in a doubly linked fashion
  • *   to form a queue of messages (this is how ACE_Message_Queue works).
  • *
  • * @see C++NPv1, section 4.2; APG, section 12.3.2.
  • */
  • class ACE_Export ACE_Message_Block
  • {
  • public:
  •   friend class ACE_Data_Block;

  •   enum
  •   {
  •     // = Data and proto
  •     /// Undifferentiated data message
  •     MB_DATA     = 0x01,
  •     /// Undifferentiated protocol control
  •     MB_PROTO    = 0x02,

  •     // = Control messages
  •     /// Line break (regular and priority)
  •     MB_BREAK    = 0x03,
  •     /// Pass file pointer
  •     MB_PASSFP   = 0x04,
  •     /// Post an event to an event queue
  •     MB_EVENT    = 0x05,
  •     /// Generate process signal
  •     MB_SIG      = 0x06,
  •     /// ioctl; set/get params
  •     MB_IOCTL    = 0x07,
  •     /// Set various stream head options
  •     MB_SETOPTS  = 0x08,

  •     // = Control messages
  •     /// Acknowledge ioctl (high priority; go to head of queue)
  •     MB_IOCACK   = 0x81,
  •     /// Negative ioctl acknowledge
  •     MB_IOCNAK   = 0x82,
  •     /// Priority proto message
  •     MB_PCPROTO  = 0x83,
  •     /// Generate process signal
  •     MB_PCSIG    = 0x84,
  •     /// Generate read notification
  •     MB_READ     = 0x85,
  •     /// Flush your queues
  •     MB_FLUSH    = 0x86,
  •     /// Stop transmission immediately
  •     MB_STOP     = 0x87,
  •     /// Restart transmission after stop
  •     MB_START    = 0x88,
  •     /// Line disconnect
  •     MB_HANGUP   = 0x89,
  •     /// Fatal error used to set u.u_error
  •     MB_ERROR    = 0x8a,
  •     /// Post an event to an event queue
  •     MB_PCEVENT  = 0x8b,

  •     // = Message class masks
  •     /// Normal priority message mask
  •     MB_NORMAL   = 0x00,
  •     /// High priority control message mask
  •     MB_PRIORITY = 0x80,
  •     /// User-defined message mask
  •     MB_USER     = 0x200
  •   };

  •   typedef int ACE_Message_Type;
  •   typedef unsigned long Message_Flags;

  •   enum
  •   {
  •     /// Don't delete the data on exit since we don't own it.
  •     DONT_DELETE = 01,
  •     /// user defined flags start here
  •     USER_FLAGS = 0x1000
  •   };

  •   // = Initialization and termination.
  •   /// Create an empty message.
  •   ACE_Message_Block (ACE_Allocator *message_block_allocator = 0);

  •   /**
  •    * Create an ACE_Message_Block that owns the specified ACE_Data_Block
  •    * without copying it. If the @a flags is set to @c DONT_DELETE we
  •    * don't delete the ACE_Data_Block. It is left to the client's
  •    * responsibility to take care of the memory allocated for the
  •    * data_block
  •    */
  •   <strong>ACE_Message_Block (ACE_Data_Block *data_block,
  •                      Message_Flags flags = 0,
  •                      ACE_Allocator *message_block_allocator = 0);</strong>

  •   /**
  •    * Create an ACE_Message_Block that refers to @a data without
  •    * copying it. The @a data memory will not be freed when this block is
  •    * destroyed; memory management of @a data is left to the caller.
  •    * Note that the @c size of the new ACE_Message_Block will be @a size, but
  •    * the @c length will be 0 until the write pointer is changed.
  •    */
  •   ACE_Message_Block (const char *data,
  •                      size_t size = 0,
  •                      unsigned long priority = ACE_DEFAULT_MESSAGE_BLOCK_PRIORITY);

  •   /**
  •    * Create an initialized message of type @a type containing @a size
  •    * bytes.  The @a cont argument initializes the continuation field in
  •    * the ACE_Message_Block.  If @a data == 0 then this block allocates and
  •    * owns the block's memory, using @a allocator to get the data if it's
  •    * non-0.  If @a data != 0 then this block refers to that memory until
  •    * this this block ceases to exist; this object will not free @a data on
  •    * destruction.  If @a locking_strategy is non-0 then this is used
  •    * to protect regions of code that access shared state (e.g.,
  •    * reference counting) from race conditions.  Note that the @c size
  •    * of the ACE_Message_Block will be @a size, but the @c length will be 0
  •    * until the write pointer is set. The @a data_block_allocator is used to
  •    * allocate the data blocks while the @a allocator_strategy is used
  •    * to allocate the buffers contained by those. The
  •    * @a message_block_allocator is used to allocate new ACE_Message_Block
  •    * objects when the duplicate() method is called. If a
  •    * @a message_block_allocator is given, this ACE_Message_Block and
  •    * future ACE_Message_Block objects created by duplicate() will be
  •    * freed using this allocator when they are released.
  •    * @note If you use this allocator, the ACE_Message_Block you created
  •    * should have been created using this allocator because it will be
  •    * released to the same allocator.
  •    */
  • <strong> ACE_Message_Block (size_t size,
  •                      ACE_Message_Type type = MB_DATA,
  •                      ACE_Message_Block *cont = 0,
  •                      const char *data = 0,
  •                      ACE_Allocator *allocator_strategy = 0,
  •                      ACE_Lock *locking_strategy = 0,
  •                      unsigned long priority = ACE_DEFAULT_MESSAGE_BLOCK_PRIORITY,
  •                      const ACE_Time_Value &execution_time = ACE_Time_Value::zero,
  •                      const ACE_Time_Value &deadline_time = ACE_Time_Value::max_time,
  •                      ACE_Allocator *data_block_allocator = 0,
  •                      ACE_Allocator *message_block_allocator = 0);</strong>

  •   /**
  •    * A copy constructor. This constructor is a bit different. If the
  •    * incoming Message Block has a data block from the stack this
  •    * constructor does a deep copy ie. allocates a new data block on
  •    * the heap and does a copy of the data from the incoming message
  •    * block. As a final note, the alignment information is used to
  •    * align the data block if it is created afresh. If the incoming
  •    * @a mb has a data block has a data block allocated from the heap,
  •    * then this constructor just duplicates (ie. a shallow copy) the
  •    * data block of the incoming @a mb.
  •    */
  •   ACE_Message_Block (const ACE_Message_Block &mb,
  •                      size_t align);

  •   /**
  •    * Create a Message Block that assumes it has ownership of @a data,
  •    * but in reality it doesnt (i.e., cannot delete it since it didn't
  •    * malloc it!).  Note that the @c size of the Message_Block will
  •    * be @a size, but the @a length  will be 0 until <wr_ptr> is set.
  •    */
  • <span style="font-size:18px;"><strong> int init (const char *data,
  •             size_t size = 0);</strong>
  • </span>
  •   /**
  •    * Create an initialized message of type @a type containing @a size
  •    * bytes.  The @a cont argument initializes the continuation field in
  •    * the Message_Block.  If @a data == 0 then we create and own the
  •    * @a data, using @a allocator_strategy to get the data if it's non-0.  If
  •    * @a data != 0 we assume that we have ownership of the @a data till
  •    * this object ceases to exist  (and don't delete it during
  •    * destruction).  If @a locking_strategy is non-0 then this is used
  •    * to protect regions of code that access shared state (e.g.,
  •    * reference counting) from race conditions.  Note that the @a size
  •    * of the Message_Block will be @a size, but the @a length will be 0
  •    * until <wr_ptr> is set. The @a data_block_allocator is use to
  •    * allocate the data blocks while the @a allocator_strategy is used
  •    * to allocate the buffers contained by those.
  •    */
  •   int init (size_t size,
  •             ACE_Message_Type type = MB_DATA,
  •             ACE_Message_Block *cont = 0,
  •             const char *data = 0,
  •             ACE_Allocator *allocator_strategy = 0,
  •             ACE_Lock *locking_strategy = 0,
  •             unsigned long priority = ACE_DEFAULT_MESSAGE_BLOCK_PRIORITY,
  •             const ACE_Time_Value &execution_time = ACE_Time_Value::zero,
  •             const ACE_Time_Value &deadline_time = ACE_Time_Value::max_time,
  •             ACE_Allocator *data_block_allocator = 0,
  •             ACE_Allocator *message_block_allocator = 0);

  •   /**
  •    * Delete all the resources held in the message.
  •    *
  •    * @note Note that release() is designed to release the continuation
  •    * chain; the destructor is not. See release() for details.
  •    */
  • <strong><span style="font-size:16px;"> virtual ~ACE_Message_Block (void);
  • </span></strong>
  •   // = Message Type accessors and mutators.

  •   /// Get type of the message.
  •   <span style="font-size:16px;"><strong>ACE_Message_Type msg_type (void) const;
  • </strong></span>
  •   /// Set type of the message.
  •   void msg_type (ACE_Message_Type type);

  •   /// Find out what type of message this is.
  •   int is_data_msg (void) const;

  •   /// Find out what class of message this is (there are two classes,
  •   /// @c normal messages and @c high-priority messages).
  •   ACE_Message_Type msg_class (void) const;

  •   // = Message flag accessors and mutators.
  •   /// Bitwise-or the @a more_flags into the existing message flags and
  •   /// return the new value.
  •   Message_Flags set_flags (Message_Flags more_flags);

  •   /// Clear the message flag bits specified in @a less_flags and return
  •   /// the new value.
  •   Message_Flags clr_flags (Message_Flags less_flags);

  •   /// Get the current message flags.
  •   <span style="font-size:18px;"><strong>Message_Flags flags (void) const;</strong>
  • </span>
  •   // = Data Block flag accessors and mutators.
  •   /// Bitwise-or the @a more_flags into the existing message flags and
  •   /// return the new value.
  •   /* @todo: I think the following set of methods could not be used at
  •    *  all. May be they are useless. Let us have it so that we dont
  •    *  mess up memory management of the Message_Block. Somebody correct
  •    *  me if I am totally totally wrong..
  •    */
  • <span style="font-size:18px;"><strong> Message_Flags set_self_flags (ACE_Message_Block::Message_Flags more_flags);</strong>
  • </span>
  •   /// Clear the message flag bits specified in @a less_flags and return
  •   /// the new value.
  •   <span style="font-size:18px;"><strong>Message_Flags clr_self_flags (ACE_Message_Block::Message_Flags less_flags);</strong>
  • </span>
  •   /// Get the current message flags.
  •   <strong><span style="font-size:18px;">Message_Flags self_flags (void) const;
  • </span></strong>
  •   /// Get priority of the message.
  •   <span style="font-size:18px;"><strong>unsigned long msg_priority (void) const;
  • </strong></span>
  •   /// Set priority of the message.
  •   <span style="font-size:18px;"><strong>void msg_priority (unsigned long priority);
  • </strong></span>
  •   /// Get execution time associated with the message.
  •   <span style="font-size:18px;"><strong>const ACE_Time_Value &msg_execution_time (void) const;</strong>
  • </span>
  •   /// Set execution time associated with the message.
  • <span style="font-size:18px;"><strong> void msg_execution_time (const ACE_Time_Value &et);

  • </strong></span>  /// Get absolute time of deadline associated with the message.
  • <span style="font-size:18px;"><strong>  const ACE_Time_Value &msg_deadline_time (void) const;</strong>
  • </span>
  •   /// Set absolute time of deadline associated with the message.
  •   <strong><span style="font-size:18px;">void msg_deadline_time (const ACE_Time_Value &dt);
  • </span></strong>
  •   // = Deep copy and shallow copy methods.

  •   /// Return an exact "deep copy" of the message, i.e., create fresh
  •   /// new copies of all the Data_Blocks and continuations.
  •   virtual ACE_Message_Block *clone (Message_Flags mask = 0) const;

  •   /// Return a "shallow" copy that increments our reference count by 1.
  •   virtual ACE_Message_Block *duplicate (void) const;

  •   /**
  •    * Return a "shallow" copy that increments our reference count by 1.
  •    * This is similar to CORBA's <_duplicate> method, which is useful
  •    * if you want to eliminate lots of checks for NULL @a mb pointers
  •    * before calling <_duplicate> on them.
  •    */
  •   <span style="font-size:18px;"><strong>static ACE_Message_Block *duplicate (const ACE_Message_Block *mb);</strong>
  • </span>
  •   /**
  •    * Decrease the shared ACE_Data_Block's reference count by 1.  If the
  •    * ACE_Data_Block's reference count goes to 0, it is deleted.
  •    * In all cases, this ACE_Message_Block is deleted - it must have come
  •    * from the heap, or there will be trouble.
  •    *
  •    * release() is designed to release the continuation chain; the
  •    * destructor is not.  If we make the destructor release the
  •    * continuation chain by calling release() or delete on the message
  •    * blocks in the continuation chain, the following code will not
  •    * work since the message block in the continuation chain is not off
  •    * the heap:
  •    *
  •    *  ACE_Message_Block mb1 (1024);
  •    *  ACE_Message_Block mb2 (1024);
  •    *
  •    *  mb1.cont (&mb2);
  •    *
  •    * And hence, call release() on a dynamically allocated message
  •    * block. This will release all the message blocks in the
  •    * continuation chain.  If you call delete or let the message block
  •    * fall off the stack, cleanup of the message blocks in the
  •    * continuation chain becomes the responsibility of the user.
  •    *
  •    * @retval 0, always, and the object this method was invoked on is no
  •    *            longer valid.
  •    */
  •   virtual ACE_Message_Block *release (void);

  •   /**
  •    * This behaves like the non-static method <release>, except that it
  •    * checks if @a mb is 0.  This is similar to <CORBA::release>, which
  •    * is useful if you want to eliminate lots of checks for NULL
  •    * pointers before calling <release> on them.  Returns @a mb.
  •    */
  •   static ACE_Message_Block *release (ACE_Message_Block *mb);

  •   // = Operations on Message data

  •   /**
  •    * Copies data into this ACE_Message_Block. Data is copied into the
  •    * block starting at the current write pointer.
  •    *
  •    * @param buf  Pointer to the buffer to copy from.
  •    * @param n    The number of bytes to copy.
  •    *
  •    * @retval 0  on success; the write pointer is advanced by @arg n.
  •    * @retval -1 if the amount of free space following the write pointer
  •    *            in the block is less than @arg n. Free space can be checked
  •    *            by calling space().
  •    */
  •   <span style="font-size:18px;"><strong>int copy (const char *buf, size_t n);</strong>
  • </span>
  •   /**
  •    * Copies a 0-terminated character string into this ACE_Message_Block.
  •    * The string is copied into the block starting at the current write
  •    * pointer. The 0-terminator is included in the copied data.
  •    *
  •    * @param buf  Pointer to the character string to copy from.
  •    *
  •    * @retval 0  on success; the write pointer is advanced by the string's
  •    *            length, including the 0 terminator.
  •    * @retval -1 if the amount of free space following the write pointer
  •    *            in the block is less than required to hold the entire string.
  •    *            Free space can be checked by calling space().
  •    */
  • <span style="font-size:18px;"><strong>  int copy (const char *buf);</strong>
  • </span>
  •   /// Normalizes data in the top-level Message_Block to align with the base,
  •   /// i.e., it "shifts" the data pointed to by <rd_ptr> down to the <base> and
  •   /// then readjusts <rd_ptr> to point to <base> and <wr_ptr> to point
  •   /// to <base> + the length of the moved data.  Returns -1 and does
  •   /// nothing if the <rd_ptr> is > <wr_ptr>, else 0 on success.
  • <span style="font-size:18px;"><strong>  int crunch (void);</strong>
  • </span>
  •   /// Resets the Message Block data to contain nothing, i.e., sets the
  •   /// read and write pointers to align with the base.
  •   <span style="font-size:18px;"><strong>void reset (void);</strong>
  • </span>
  •   /// Access all the allocators in the message block.
  •   /// @todo Not sure whether we would need finer control while
  •   /// trying to access allocators ie. a method for every allocator.
  •   /**
  •    * This method returns the allocators only from the first message
  •    * block in the chain.
  •    *
  •    * @param allocator_strategy Strategy used to allocate the
  •    *                           underlying buffer
  •    *
  •    * @param data_block_allocator Strategy used to allocate the
  •    *                             underlying data block
  •    *
  •    * @param message_block_allocator Strategy used to allocate the
  •    *                                message block
  •    */
  •   <span style="font-size:18px;"><strong>void access_allocators (ACE_Allocator *&allocator_strategy,
  •                           ACE_Allocator *&data_block_allocator,
  •                           ACE_Allocator *&message_block_allocator);</strong>
  • </span>
  •   /// Reset all the allocators in the message block.
  •   /// @todo Not sure whether we would need finer control while
  •   /// trying to reset allocators ie. a method for every allocator.
  •   /**
  •    * This method resets the allocators in all the message blocks in
  •    * the chain.
  •    */
  •   <span style="font-size:18px;"><strong>void reset_allocators (ACE_Allocator *allocator_strategy = 0,
  •                          ACE_Allocator *data_block_allocator = 0,
  •                          ACE_Allocator *message_block_allocator = 0);</strong>

  • </span>  /// Get message data.
  •   <span style="font-size:18px;"><strong>char *base (void) const;</strong>
  • </span>
  •   /// Set message data (doesn't reallocate).
  •   <span style="font-size:18px;"><strong>void base (char *data,
  •              size_t size,
  •              Message_Flags = DONT_DELETE);</strong>
  • </span>
  •   /// Return a pointer to 1 past the end of the allocated data in a message.
  •   char *end (void) const;

  •   /**
  •    * Return a pointer to 1 past the end of the allotted data in a message.
  •    * Allotted data may be less than allocated data  if a value smaller than
  •    * capacity() to is passed to size().
  •    */
  • <span style="font-size:18px;"><strong> char *mark (void) const;</strong>
  • </span>
  •   /// Get the read pointer.
  •   <span style="font-size:24px;"><strong>char *rd_ptr (void) const;</strong>

  • </span>  /// Set the read pointer to @a ptr.
  • <span style="font-size:18px;"><strong> void rd_ptr (char *ptr);</strong>
  • </span>
  •   /// Set the read pointer ahead @a n bytes.
  • <span style="font-size:18px;"><strong>  void rd_ptr (size_t n);</strong>
  • </span>
  •   /// Get the write pointer.
  •   <strong><span style="font-size:18px;">char *wr_ptr (void) const;
  • </span></strong>
  •   /// Set the write pointer to @a ptr.
  • <span style="font-size:18px;"><strong> void wr_ptr (char *ptr);</strong>
  • </span>
  •   /// Set the write pointer ahead @a n bytes.  This is used to compute
  •   /// the <length> of a message.
  • <span style="font-size:18px;"><strong>  void wr_ptr (size_t n);</strong>
  • </span>
  •   /** @name Message length and size operations
  •    *
  •    * Message length is (wr_ptr - rd_ptr).
  •    *
  •    * Message size is capacity of the message, including data outside
  •    * the [rd_ptr,wr_ptr] range.
  •    */
  •   //@{
  •   /// Get the length of the message
  • <span style="font-size:18px;"><strong>  size_t length (void) const;</strong>
  • </span>
  •   /// Set the length of the message
  •   <span style="font-size:18px;"><strong>void length (size_t n);</strong>
  • </span>
  •   /// Get the length of the Message_Blocks, including chained
  •   /// Message_Blocks.
  •   <span style="font-size:18px;"><strong>size_t total_length (void) const;</strong>

  • </span>  /// Get the total number of bytes in all Message_Blocks, including
  •   /// chained Message_Blocks.
  •   <span style="font-size:18px;"><strong>size_t total_size (void) const;</strong>
  • </span>
  •   /// Get the total number of bytes and total length in all
  •   /// Message_Blocks, including chained Message_Blocks.
  •   <span style="font-size:18px;"><strong>void total_size_and_length (size_t &mb_size,
  •                               size_t &mb_length) const;</strong>
  • </span>
  •   /// Get the number of bytes in the top-level Message_Block (i.e.,
  •   /// does not consider the bytes in chained Message_Blocks).
  •   <span style="font-size:18px;"><strong>size_t size (void) const;</strong>
  • </span>
  •   /**
  •    * Set the number of bytes in the top-level Message_Block,
  •    * reallocating space if necessary.  However, the @c rd_ptr_ and
  •    * @c wr_ptr_ remain at the original offsets into the buffer, even if
  •    * it is reallocated.  Returns 0 if successful, else -1.
  •    <span style="font-size:18px;"><strong>*/
  •   int size (size_t length);</strong>
  • </span>
  •   /// Get the number of allocated bytes in all Message_Block, including
  •   /// chained Message_Blocks.
  • <span style="font-size:18px;"><strong> size_t total_capacity (void) const;</strong>
  • </span>
  •   /// Get the number of allocated bytes in the top-level Message_Block.
  • <span style="font-size:18px;"><strong> size_t capacity (void) const;</strong>
  • </span>
  •   /// Get the number of bytes available after the <wr_ptr_> in the
  •   /// top-level Message_Block.
  • <strong><span style="font-size:18px;"> size_t space (void) const;
  • </span></strong>  //@}

  •   // = ACE_Data_Block methods.

  •   /**
  •    * Get a pointer to the data block. Note that the ACE_Message_Block
  •    * still references the block; this call does not change the reference
  •    * count.
  •    */
  •   ACE_Data_Block *data_block (void) const;

  •   /**
  •    * Set a new data block pointer. The original ACE_Data_Block is released
  •    * as a result of this call. If you need to keep the original block, call
  •    * <replace_data_block> instead. Upon return, this ACE_Message_Block
  •    * holds a pointer to the new ACE_Data_Block, taking over the reference
  •    * you held on it prior to the call.
  •    */
  •   void data_block (ACE_Data_Block *);

  •   /// Set a new data block pointer. A pointer to the original ACE_Data_Block
  •   /// is returned, and not released (as it is with <data_block>).
  •   ACE_Data_Block *replace_data_block (ACE_Data_Block*);

  •   // = The continuation field chains together composite messages.
  •   /// Get the continuation field.
  •   ACE_Message_Block *cont (void) const;

  •   /// Set the continuation field.
  •   void cont (ACE_Message_Block *);

  •   // = Pointer to the Message_Block directly ahead in the ACE_Message_Queue.
  •   /// Get link to next message.
  • <span style="font-size:18px;"><strong>  ACE_Message_Block *next (void) const;</strong>
  • </span>
  •   /// Set link to next message.
  • <span style="font-size:18px;"><strong> void next (ACE_Message_Block *);</strong>

  • </span>  // = Pointer to the Message_Block directly behind in the ACE_Message_Queue.
  •   /// Get link to prev message.
  • <span style="font-size:18px;"><strong>  ACE_Message_Block *prev (void) const;</strong>
  • </span>
  •   /// Set link to prev message.
  •   <span style="font-size:18px;"><strong>void prev (ACE_Message_Block *);</strong>
  • </span>
  •   // = The locking strategy prevents race conditions.
  •   /// Get the locking strategy.
  •   ACE_Lock *locking_strategy (void);

  •   /// Set a new locking strategy and return the hold one.
  •   ACE_Lock *locking_strategy (ACE_Lock *);

  •   /// Get the current reference count.
  •   int reference_count (void) const;

  •   /// Dump the state of an object.
  •   void dump (void) const;

  •   /// Declare the dynamic allocation hooks.
  •   ACE_ALLOC_HOOK_DECLARE;

  • protected:
  •   // = Internal initialization methods.
  •   /// Perform the actual initialization.
  •   ACE_Message_Block (size_t size,
  •                      ACE_Message_Type type,
  •                      ACE_Message_Block *cont,
  •                      const char *data,
  •                      ACE_Allocator *allocator_strategy,
  •                      ACE_Lock *locking_strategy,
  •                      Message_Flags flags,
  •                      unsigned long priority,
  •                      const ACE_Time_Value &execution_time,
  •                      const ACE_Time_Value &deadline_time,
  •                      ACE_Data_Block *db,
  •                      ACE_Allocator *data_block_allocator,
  •                      ACE_Allocator *message_block_allocator);

  •   /// Internal release implementation
  •   /// Returns 1 if the data block has to be destroyed.
  •   int release_i (ACE_Lock *lock);

  •   /// Perform the actual initialization.
  •   int init_i (size_t size,
  •               ACE_Message_Type type,
  •               ACE_Message_Block *cont,
  •               const char *data,
  •               ACE_Allocator *allocator_strategy,
  •               ACE_Lock *locking_strategy,
  •               Message_Flags flags,
  •               unsigned long priority,
  •               const ACE_Time_Value &execution_time,
  •               const ACE_Time_Value &deadline_time,
  •               ACE_Data_Block *db,
  •               ACE_Allocator *data_block_allocator,
  •               ACE_Allocator *message_block_allocator);

  •   /// Pointer to beginning of next read.
  •   size_t rd_ptr_;

  •   /// Pointer to beginning of next write.
  •   size_t wr_ptr_;

  •   /// Priority of message.
  •   unsigned long priority_;

  • #if defined (ACE_HAS_TIMED_MESSAGE_BLOCKS)
  •   /// Execution time associated with the message.
  •   ACE_Time_Value execution_time_;

  •   /// Absolute deadline time for message.
  •   ACE_Time_Value deadline_time_;
  • #endif /* ACE_HAS_TIMED_MESSAGE_BLOCKS */

  •   // = Links to other ACE_Message_Block *s.
  •   /// Pointer to next message block in the chain.
  •   ACE_Message_Block *cont_;

  •   /// Pointer to next message in the list.
  •   ACE_Message_Block *next_;

  •   /// Pointer to previous message in the list.
  •   ACE_Message_Block *prev_;

  •   /// Misc flags (e.g., DONT_DELETE and USER_FLAGS).
  •   ACE_Message_Block::Message_Flags flags_;

  •   /// Pointer to the reference counted data structure that contains the
  •   /// actual memory buffer.
  •   ACE_Data_Block *data_block_;

  •   /// The allocator used to destroy ourselves when release is called
  •   /// and create new message blocks on duplicate.
  •   ACE_Allocator *message_block_allocator_;

  • private:
  •   // = Disallow these operations for now (use <clone> instead).
  •   ACE_Message_Block &operator= (const ACE_Message_Block &);
  •   ACE_Message_Block (const ACE_Message_Block &);
  • };

  • /**
  • * @class ACE_Data_Block
  • *
  • * @brief Stores the data payload that is accessed via one or more
  • * ACE_Message_Block's.
  • *
  • * This data structure is reference counted to maximize
  • * sharing.  It also contains the <locking_strategy_> (which
  • * protects the reference count from race conditions in
  • * concurrent programs) and the <allocation_strategy_> (which
  • * determines what memory pool is used to allocate the memory).
  • */
  • class ACE_Export ACE_Data_Block
  • {
  • public:
  •   // = Initialization and termination methods.
  •   /// Default "do-nothing" constructor.
  •   ACE_Data_Block (void);

  •   /// Initialize.
  •   ACE_Data_Block (size_t size,
  •                   ACE_Message_Block::ACE_Message_Type msg_type,
  •                   const char *msg_data,
  •                   ACE_Allocator *allocator_strategy,
  •                   ACE_Lock *locking_strategy,
  •                   ACE_Message_Block::Message_Flags flags,
  •                   ACE_Allocator *data_block_allocator);

  •   /// Delete all the resources held in the message.
  •   virtual ~ACE_Data_Block (void);

  •   /// Get type of the message.
  •   ACE_Message_Block::ACE_Message_Type msg_type (void) const;

  •   /// Set type of the message.
  •   void msg_type (ACE_Message_Block::ACE_Message_Type type);

  •   /// Get message data pointer
  •   char *base (void) const;

  •   /// Set message data pointer (doesn't reallocate).
  •   void base (char *data,
  •              size_t size,
  •              ACE_Message_Block::Message_Flags mflags = ACE_Message_Block::DONT_DELETE);

  •   /// Return a pointer to 1 past the end of the allocated data in a message.
  •   char *end (void) const;

  •   /**
  •    * Return a pointer to 1 past the end of the allotted data in a message.
  •    * The allotted data may be less than allocated data if <size()> is passed
  •    * an argument less than <capacity()>.
  •    */
  •   char *mark (void) const;

  •   // = Message size is the total amount of space allotred.

  •   /// Get the total amount of allotted space in the message.  The amount of
  •   /// allotted space may be less than allocated space.
  •   size_t size (void) const;

  •   /// Set the total amount of space in the message.  Returns 0 if
  •   /// successful, else -1.
  •   int size (size_t length);

  •   /// Get the total amount of allocated space.
  •   size_t capacity (void) const;

  •   /**
  •    * Return an exact "deep copy" of the message, i.e., create fresh
  •    * new copies of all the Data_Blocks and continuations.
  •    * Notice that Data_Blocks can act as "Prototypes", i.e. derived
  •    * classes can override this method and create instances of
  •    * themselves.
  •    */
  •   virtual ACE_Data_Block *clone (ACE_Message_Block::Message_Flags mask = 0) const;

  •   /**
  •    * As clone above, but it does not copy the contents of the buffer,
  •    * i.e., create a new Data_Block of the same dynamic type, with the
  •    * same allocator, locking_strategy, and with the same amount of
  •    * storage available (if @a max_size is zero) but the buffer is unitialized.
  •    * If @a max_size is specified other than zero, it will be used when
  •    * creating the new data block.
  •    */
  •   virtual ACE_Data_Block *clone_nocopy (ACE_Message_Block::Message_Flags mask = 0,
  •                                         size_t max_size = 0) const;

  •   /// Return a "shallow" copy that increments our reference count by 1.
  •   ACE_Data_Block *duplicate (void);

  •   /**
  •    * Decrease the shared reference count by 1.  If the reference count
  •    * is > 0 then return this; else if reference count == 0 then delete
  •    * @c this and @a mb and return 0.  Behavior is undefined if reference
  •    * count < 0.
  •    */
  • <span style="font-size:18px;"><strong>  ACE_Data_Block *release (ACE_Lock *lock = 0);</strong>
  • </span>
  •   // = Message flag accessors and mutators.
  •   /// Bitwise-or the @a more_flags into the existing message flags and
  •   /// return the new value.
  •   ACE_Message_Block::Message_Flags set_flags (ACE_Message_Block::Message_Flags more_flags);

  •   /// Clear the message flag bits specified in @a less_flags and return
  •   /// the new value.
  •   ACE_Message_Block::Message_Flags clr_flags (ACE_Message_Block::Message_Flags less_flags);

  •   /// Get the current message flags.
  •   ACE_Message_Block::Message_Flags flags (void) const;

  •   /// Obtain the allocator strategy.
  •   ACE_Allocator *allocator_strategy (void) const;

  •   // = The locking strategy prevents race conditions.
  •   /// Get the locking strategy.
  •   ACE_Lock *locking_strategy (void);

  •   /// Set a new locking strategy and return the hold one.
  •   ACE_Lock *locking_strategy (ACE_Lock *);

  •   /// Dump the state of an object.
  • <span style="font-size:24px;"><strong> void dump (void) const;</strong>
  • </span>
  •   /// Get the current reference count.
  •   int reference_count (void) const;

  •   /// Get the allocator used to create this object
  •   ACE_Allocator *data_block_allocator (void) const;

  • protected:
  •   /// Internal release implementation
  •   virtual ACE_Data_Block *release_i (void);

  •   /// Internal get the current reference count.
  •   int reference_count_i (void) const;

  •   /**
  •    * Decrease the reference count, but don't delete the object.
  •    * Returns 0 if the object should be removed.
  •    * If @a lock is equal to the locking strategy then we assume that
  •    * the lock is being held by the current thread; this is used to
  •    * release all the data blocks in a chain while holding a single
  •    * lock.
  •    */
  •   friend class ACE_Message_Block;
  •   ACE_Data_Block *release_no_delete (ACE_Lock *lock);

  •   /// Type of message.
  •   ACE_Message_Block::ACE_Message_Type type_;

  •   /// Current size of message block.
  •   size_t cur_size_;

  •   /// Total size of buffer.
  •   size_t max_size_;

  •   /// Misc flags (e.g., DONT_DELETE and USER_FLAGS).
  •   ACE_Message_Block::Message_Flags flags_;

  •   /// Pointer To beginning of message payload.
  •   char *base_;

  •   // = Strategies.
  •   /**
  •    * Pointer to the allocator defined for this ACE_Data_Block.  Note
  •    * that this pointer is shared by all owners of this
  •    * ACE_Data_Block.
  •    */
  •   ACE_Allocator *allocator_strategy_;

  •   /**
  •    * Pointer to the locking strategy defined for this
  •    * ACE_Data_Block.  This is used to protect regions of code that
  •    * access shared ACE_Data_Block state.  Note that this lock is
  •    * shared by all owners of the ACE_Data_Block's data.
  •    */
  •   ACE_Lock *locking_strategy_;

  •   /**
  •    * Reference count for this ACE_Data_Block, which is used to avoid
  •    * deep copies (i.e., clone()).  Note that this pointer value is
  •    * shared by all owners of the <Data_Block>'s data, i.e., all the
  •    * ACE_Message_Blocks.
  •    */
  •   int reference_count_;

  •   /// The allocator use to destroy ourselves.
  •   ACE_Allocator *data_block_allocator_;

  • private:
  •   // = Disallow these operations.
  •   ACE_Data_Block &operator= (const ACE_Data_Block &);
  •   ACE_Data_Block (const ACE_Data_Block &);
  • };

  • ACE_END_VERSIONED_NAMESPACE_DECL

  • #if defined (__ACE_INLINE__)
  • #include "ace/Message_Block.inl"
  • #endif /* __ACE_INLINE__ */

  • #include "ace/Message_Block_T.h"

  • #include /**/ "ace/post.h"

  • #endif /* ACE_MESSAGE_BLOCK_H */

以上均就是所有的方法了
下面也就是分析容易混淆的函数ACE_Message_Block中有多个获取大小或者长度的函数,容易混淆.
下图是根据ACE_Message_Block(实际是ACE_Data_Block)空间的处理状况所绘,能比较清晰的反应出它们的异同.
需要注意,为了表现出多样性,下图是wr_ptr(),rd_ptr(),size()都调用过之后的情景.
红色表示是ACE_Message_Block独有的函数, 其余则ACE_Message_Block和ACE_Data_Block均有.
矩形纸上函数的返回值均为指针类型,之下的返回值均为size_t类型.
函数说明
length()有效数据的长度== wr_ptr() – rd_ptr()
size()全部可用空间的长度,如果没有size()而变小,则等同capacity()== mark() – base()
space()剩余可用空间的长度<= size() - length(),因为不含rd_ptr()移动过的空间== mark() – wr_ptr()
capacity()最大空间的长度(ACE_Message_Block构造或初始化时所用参数值)== end() – base()
total_length()复合消息(ACE_Message_Block内单向链 cont())的总长度
total_size()复合消息(ACE_Message_Block内单向链 cont())的总大小
total_capacity()复合消息(ACE_Message_Block内单向链 cont())的总空间大小

duplicate()浅拷贝函数,公用一个内部的ACE_Data_Block
ACE_Message_Block::duplicate() 与 ACE_Data_Block.duplicate()的实现是不同的.
ACE_Data_Block::duplicate()简单的只是将自身的reference加+1, 然后返回自身(this)
ACE_Message_Block:duplicate()则将自身copy了一份, 然后将自身的状态值赋给拷贝,注意它们公用同一个data_block.而且ACE_Message_Block::duplicate()支持复合消息,它会检查内部单向链,来依次调用其duplicate().ACE_Message_Block::clone()深拷贝, 不但拷贝自身,内部的ACE_Data_Block也一并拷贝了,并且支持复合消息.ACE_Data_Block.size(size_t len)函数, 动态的变化ACE_Data_Block持有的空间.
ACE_Message_Block.size(size_t len)函数是ACE_Data_Block.size(size_t len)的简单包裹.
如果len比现有的尺寸小, 简单的cur_size_ = length;
如果len比现有的尺寸大, 会申请新的空间并拷贝原所有数据.注意! 这里可能会发生空间控制权的转换! 即标志位DONT_DELETE的变化.若原ACE_Data_Block使用托管空间, 则此时会更替为自己申请的空间,从而拥有了控制权, 所以此时要注意原有空间的管理.
对ACE_Message_Block和ACE_Data_Block, 除非主动调用size(), 否则它们不会自动申请和扩大空间.ACE_Message_Block::crunch() 将现有数据移动到现有的缓冲的开始.ACE_Message_Block::reset()将现有读写指针赋为初始值(ACE_Data_Block.base())ACE_Message_Block::base()是对ACE_Data_Block.base()的简单包裹1)ACE_Message_Block的构造函数中,如果data为NULL, 则ACE_Message_Block会为其自动分配空间. 但如data非NULL,则ACE_Message_Block会直接引用data指向的空间, 并不会进行新的空间分配和拷贝.所以需要特别注意, 在ACE_Message_Block的实例没有销毁之前,不能释放data指向的空间. 2)虽然ACE_Message_Block会根据size的值来更改自己的size(),但wr_ptr不会根据data的长度进行设置, 造成length()的返回为0.需要特别注意, 当构造一个ACE_Message_Block实例后, 随之需要追加数据时,必须设置wr_ptr的值,否则原有数据将会被覆写.此时的含义是: ACE_Message_Block代管了data缓冲区,但不负责缓冲区的空间管理(因为也不是由它申请的).默认定义的flag: enum { [url=]DONT_DELETE[/url] = 01, [url=]USER_FLAGS[/url] = 0x1000 } 1) set_flags()、clr_flags()是对ACE_Message_Block中的数据指针(ACE_Data_Block*)进行设置.2) set_self_flags(),clr_self_flags()是对ACE_Message_Block本身进行设置.ACE_Message_Block::copy(const char* buf) 函数将字符串copy到ACE_Message_Block, 如果内在空间不足, 将会返回-1.需要特别注意, copy的数据将包括末尾的0, 也就是copy的数据长度为strlen(buf)+1.而且, 会自动进行wr_ptr()的设置ACE_Data_Block的析构函数是释放持有空间base_的惟一路径(size()的情况不讨论).ACE_Data_Block中通过duplicate()递增引用计数. ACE_Data_Block中通过release()递减引用计数, 当引用计数为0时,先调用ACE_Data_Block析构函数,然后释放ACE_Data_Block自身.
注意, ACE_Data_Block的构造和析构函数都不知道引用计数的存在. 在构造函数中, 只是设置了初始值1.ACE_Data_Block一个很奇怪的地方就是ACE_Data_Block::duplicate()的实现, 并没有创建新的拷贝, 而仅仅是返回了自身(return this). 这中实现方式带来了很多奇怪的问题.如下面的2,3.
release()-> release_no_delete()->release_i()->~ACE_Data_Block()如果在Stack上构造ACE_Data_Block,那么不能使用release()函数, 因为release()函数会试图删除this如果在stack上构造ACE_Data_Block, 那么不能使用duplicate()函数, 因为duplicate()返回的是this指针, 栈中的ACE_Data_Block析构后会导致问题.如果在heap上构造ACE_Data_Block,那么尽量使用release()来替代delete, 如果存在因为析构并不处理reference count, delete时不考虑其它会导致指针悬空.
更多文章,欢迎访问:http://blog.csdn.net/wallwind
发表于 2012-3-14 21:36:35 | 显示全部楼层
支持下  辛苦了楼主
您需要登录后才可以回帖 登录 | 用户注册

本版积分规则

Archiver|手机版|小黑屋|ACE Developer ( 京ICP备06055248号 )

GMT+8, 2024-11-21 20:38 , Processed in 0.022418 second(s), 6 queries , Redis On.

Powered by Discuz! X3.5

© 2001-2023 Discuz! Team.

快速回复 返回顶部 返回列表