找回密码
 用户注册

QQ登录

只需一步,快速开始

查看: 4157|回复: 0

哈夫曼压缩算法

[复制链接]
发表于 2011-12-26 22:03:31 | 显示全部楼层 |阅读模式
编程独白
给你40分钟的时间,你可以思考十分钟,然后用三十分钟的时间来写代码,最后浪费在无谓的调试上;你也可以思考半个小时,彻底弄清问题的本质与程序的脉络,然后用十分钟的时间来编写代码,体会代码如行云流水而出的感觉。在编程过程当中,相信大家都深有体会,在调试上浪费时间,问题出现在下笔之前没有一个系统结构。
关于哈夫曼 哈夫曼在通信领域有很多的用途,将需要传输的数据转换01串,相比直接传输,极大提高了传输的速率,同时还在数据压缩的重要方法。而本篇主要介绍的是哈夫曼压缩算法。

哈夫曼树创建 哈夫曼树创建用了两种的方法,一种是基于顺序表,另一种是基于最小堆。关于这两种方法可以参考:
建立Huffman树的基本思路:

给定有权重的一系列数据(带权重),从中挑选最小权重的两个数据,组成一棵树,得到的父节点再插入到数据系列当中。


哈夫曼压缩思路
假设一字符串是,“abcabcabcabcabcabcddddddddd”,统计各字符出现的次数如下表。
字符出现次数
a6
b6
c6
d9



按照一搬的存储方法,一个字符占用一个字节,那么共花费(6+6+6+9)*sizeof(char) = 27字节,27字节确实不算什么,但是如果是海量数据的时候,就可能要考虑存储空间的问题了。
来看看哈夫曼压缩算法是怎么做的,同样是上面的例子,我们试着建立哈夫曼树,出现的次数就当做是权重,出现的次数越多的话,越靠近根节点,那么编码越短,如下图:


于是上面的“abcabcabcabcabcabcddddddddd”,就可以转化为“0001,1000,0110,0001,1000,0110,0001,1000,0110,1111,1111,1111,1111,11”,注意这里采用的按位存储的,也就是说0和1都是位,而非char型。那么之前的27字节就被我们转换成了7个字节(7字节不足,不足的话就补零),而这就达到了压缩的效果。
所以总结一下:利用哈夫曼树编码的特点,权重越大越靠近根节点,得到的编码就越短的原理,而如果把字符出现次数作为权重的话,文本当中出现次数最多的字符就被压缩成了很短的编码。
哈夫曼压缩详解


·压缩过程主要步骤如下:
  • 统计:读入源文件,统计字符出现的次数(即统计权重),顺便根据权重进行从大到小的排序(主要的话之后的操作会简单一些);
  • 建树:以字符的权重(权重为0的字符除外)为依据建立哈夫曼树;
  • 编码:依据2中的哈夫曼树,得到每一个字符的编码;
  • 写入:新建压缩文件,写入压缩数据。


其中最为复杂的是步骤4,因为它涉及到了位的操作,待我细细道来。

假设一字符串是,“acbcbacddaddaddccd”,统计各字符出现的次数如下表。
字符出现次数
a4
b2
c5
d7

哈夫曼树  



步骤123统计,建树,编码都已经完成了,剩下写入压缩文件。将字符串一步一步翻译成01串,
  • a:000
  • ac:0001 0
  • acb:0001 0110
  • acbc:0001 0110 10
  • acbcb:0001 0110 1011 0…




似乎都很顺利,但是位操作有点麻烦。首先申请足够大的内存,比如已知文本字符个数是1000个字符(字节),可以申请1000*4,即一个字节平均4字节(32位)的压缩编码空间(已经足够大了),别把这些看成是char型了,当作位来看。
声明nDestIndex作为已编码的位数,相当于counter。刚申请的足够大的内存以8位划分,那么可以发现:
  • nCodeIndex/8可以标明第一个未存满的字节,相当于nCodeIndex>>3;

  • nCodeIndex%8可以标明第一个未存满的字节当中有几位已经完成了存储,相当于nCodeIndex&7。



可能说的不够清楚,所以画了图:



*(long *)(pDest+(nCodeIndex>>3)) |= (p->code) << (nCodeIndex&7);(其中p为哈夫曼节点)



如此一来,我们就可以很理直气壮的将*(long *)(pDest+(nCodeIndex>>3))赋值为*(long *)(pDest+(nCodeIndex>>3)) | (p->code) << (nCodeIndex&7)(0|X=X),而不用担心到底*(long *)(pDest+(nCodeIndex>>3))里面到底有多少位已经是存储了的。
给出压缩主要代码:
  1. void CompressHuffman(char * filename)
  2. {
  3.         //·统计权重
  4.         int count = Statistics(filename);
  5.         Huffman hf;
  6.         hf.CreateHuffmanTree(acsii,count);
  7.         //·测试
  8.         //hf.Print();
  9.         //根据生成的哈夫曼树,为每个字符生成编码
  10.         EnCode(&hf,count);
  11.         HuffmanNode * root = hf.GetRoot();
  12.         fstream fshuff;
  13.         fshuff.open("data.huff",ios::binary|ios::out);
  14.         //写入压缩文件的工作流程如下:
  15.         //·数据个数(字符出现的个数)
  16.         //·每个数据(data)以及其权重(rate)
  17.         //·源文件中的字符个数,如源文件为abcd123,那么字符个数为7
  18.         //·编码的长度
  19.         //·编码
  20.         //·写入字符个数,比如abdarr,字符个数是4
  21.         fshuff.write((char *)&count,sizeof(int));
  22.         //·写入acsii值和权重,以便在解压缩的时候重建哈夫曼树
  23.         unsigned int  i;
  24.         for(i=0; i<count; i++)
  25.         {
  26.                 //·这里的读写可能会有问题的
  27.                 fshuff.write((char *)&(acsii[i].data),sizeof(char));
  28.                 fshuff.write((char *)&(acsii[i].rate),sizeof(int));       
  29.         }
  30.         //·注意区别fs和fshuff,前者是源文件,后者是压缩后的文件
  31.         fstream fs(filename,ios::in|ios::binary);
  32.         //·获取源文件文件字节数大小,seekg用在读中,seekp用在写中
  33.         fs.seekg(0, ios_base::end);
  34.         long nFileLen = fs.tellg();
  35.         fs.seekg(0,ios::beg);
  36.         //·将源文件逐个写入到压缩文件当中
  37.         char * pDest = new char [nFileLen];
  38.         for(i=0; i<nFileLen; i++)                //·清零,不清零会出现致命性的错误
  39.                 *(pDest+i) = 0;
  40.         unsigned int nCodeIndex = 0;
  41.         char * temp = new char[nFileLen+1];
  42.         fs.read(temp,nFileLen);
  43.         HuffmanNode *  p;
  44.         for(i=0; i<nFileLen; i++)
  45.         {
  46.                 //·在acsii表当中
  47.                 p = GetCodeFromACSIITable(temp[i],count);
  48.                 assert(p != NULL);
  49.                 *(long *)(pDest+(nCodeIndex>>3)) |=
  50.                         (p->lCode) << (nCodeIndex&7);
  51.                 nCodeIndex += p->nCodeLen;
  52.         }
  53.         //·写入源文件的字符个数
  54.         fshuff.write((char *)&nFileLen,sizeof(long));
  55.         //·写入编码长度
  56.         fshuff.write((char *)&nCodeIndex,sizeof(int));
  57.         unsigned int  nDestLen = nCodeIndex/8;
  58.         if(nDestLen*8 < nCodeIndex)
  59.                 nDestLen ++;
  60.         //·写入编码
  61.         fshuff.write(pDest,nDestLen);
  62.         fshuff.close();
  63.         fs.close();
  64. }
复制代码

简介哈夫曼压缩文件DL结构
前一段时间在接触位图的时候被位图结构触动了,感觉它存储得有条理,于是萌生了为哈夫曼压缩文件定义一个存储结构,称之为哈夫曼压缩文件DL结构。关键是要统一,这篇博文用的是一种结构,另一篇用的又是另一种,纷杂的样式会让初学者发晕,所以统一结构对于学习哈夫曼压缩文件会有很大的帮助。
DL结构组成部分:
  • 节点个数-用以规定创建哈夫曼树节点个数,以便读入节点域;
  • 节点域-用以创建哈夫曼树和产生字符编码;
  • 源文件字符数-在解压的时候有用;
  • 编码长度(以位为单位)-源文件编码的总长度,以位为单位;
  • 编码域-存储所有字符编码的存储域。

为了便于让你不看文字就能明白,看下图,按着这种结构就相当于有了大概的思路。



哈夫曼解压详解
解压的过程就简单很多了,因为一些代码已经在解压过程当中完成,比如哈夫曼树的建立,我们只要设计压缩和解压通用的接口,就可以很简单的按照编码域的内容,将编码翻译成原文。
  • 读入节点个数;
  • 根据1,读入节点域;
  • 创建哈夫曼树;
  • 读入编码长度;
  • 根据4,读入编码域;
  • 翻译;
  • 写入解压后的文件。


根据编码长度(以bit为单位),可以计算出编码域的大小(以byte为单位),读入编码域就很方便了。其中翻译部分我给出一部分代码,根据哈夫曼树,将编码域的01串按位处理,转换为字符。
  • Code&1判断最低位是0还是1,从而决定指向left还是right;
  • Code>>=1,将Code右移,方便处理下一位;
  • 每当翻译出一个字符,就要将当前的哈夫曼指针重新指向root,p = hf.GetRoot()。
  1. for(i=0; i<nFileLen-1;)                //·特地少处理一个字节
  2.         {
  3.                 Code = *(temp+(nSrcIndex));
  4.                 for(int j=7; j>=0; j--)
  5.                 {
  6.                         p = (Code&1) ? p->right : p->left;
  7.                         if(!p->left && !p->right)
  8.                         {
  9.                                 *(pDest+i) = p->data;
  10.                                 p = hf.GetRoot();
  11.                                 i++;
  12.                         }
  13.                         Code>>=1;                        //·为了处理下一位,右移一位
  14.                 }
  15.                 nSrcIndex ++;
  16.         }
  17.         Code = *(temp+(nSrcIndex));
  18.         for(int j=0; j<nOffset; j++)
  19.         {
  20.                 p = (Code&1) ? p->right : p->left;
  21.                 if(!p->left && !p->right)
  22.                 {
  23.                         *(pDest+i) = p->data;
  24.                         cout << p->data << endl;
  25.                         p = hf.GetRoot();
  26.                 }
  27.                 Code>>=1;                        //·为了处理下一位,右移一位
  28.         }
复制代码
附哈夫曼压缩算法工程:哈夫曼压缩算法.rar
本文完。Monday, December 26, 2011
本文链接
您需要登录后才可以回帖 登录 | 用户注册

本版积分规则

Archiver|手机版|小黑屋|ACE Developer ( 京ICP备06055248号 )

GMT+8, 2024-12-5 03:18 , Processed in 0.017558 second(s), 6 queries , Redis On.

Powered by Discuz! X3.5

© 2001-2023 Discuz! Team.

快速回复 返回顶部 返回列表