在Win32下用C++实现多线程读写锁
读写锁实际是一种特殊的自旋锁,它把对共享资源的访问者划分成读者和写者,读者只对共享资源进行读访问,写者则需要对共享资源进行写操作。这种锁相对于自旋锁而言,能提高并发性,因为在多处理器系统中,它允许同时有多个读者来访问共享资源,最大可能的读者数为实际的逻辑CPU数。写者是排他性的,一个读写锁同时只能有一个写者或多个读者(与CPU数相关),但不能同时既有读者又有写者。现在Win32的API,用C++实现自己的读写锁。这组API包括:CreateMutex,CreateEvent,WaitForSingleObject,WaitForMultipleObjects,ResetEvent,ReleaseMutex,SetEvent,CloseHandle。以下代码在VS2005下,已经编译通过。
RWLockImpl.h
#ifndef _RWLockImpl_Header
#define _RWLockImpl_Header
#include <assert.h>
#include <iostream>
#include <Windows.h>
#include <process.h>
using namespace std;
/*
读写锁允许当前的多个读用户访问保护资源,但只允许一个写读者访问保护资源
*/
//-----------------------------------------------------------------
class CRWLockImpl
{
protected:
CRWLockImpl();
~CRWLockImpl();
void ReadLockImpl();
bool TryReadLockImpl();
void WriteLockImpl();
bool TryWriteLockImpl();
void UnlockImpl();
private:
void AddWriter();
void RemoveWriter();
DWORD TryReadLockOnce();
HANDLE m_mutex;
HANDLE m_readEvent;
HANDLE m_writeEvent;
unsigned m_readers;
unsigned m_writersWaiting;
unsigned m_writers;
};
//-----------------------------------------------------------------
class CMyRWLock: private CRWLockImpl
{
public:
//创建读/写锁
CMyRWLock(){};
//销毁读/写锁
~CMyRWLock(){};
//获取读锁
//如果其它一个线程占有写锁,则当前线程必须等待写锁被释放,才能对保护资源进行访问
void ReadLock();
//尝试获取一个读锁
//如果获取成功,则立即返回true,否则当另一个线程占有写锁,则返回false
bool TryReadLock();
//获取写锁
//如果一个或更多线程占有读锁,则必须等待所有锁被释放
//如果相同的一个线程已经占有一个读锁或写锁,则返回结果不确定
void WriteLock();
//尝试获取一个写锁
//如果获取成功,则立即返回true,否则当一个或更多其它线程占有读锁,返回false
//如果相同的一个线程已经占有一个读锁或写锁,则返回结果不确定
bool TryWriteLock();
//释放一个读锁或写锁
void Unlock();
private:
CMyRWLock(const CMyRWLock&);
CMyRWLock& operator = (const CMyRWLock&);
};
inline void CMyRWLock::ReadLock()
{
ReadLockImpl();
}
inline bool CMyRWLock::TryReadLock()
{
return TryReadLockImpl();
}
inline void CMyRWLock::WriteLock()
{
WriteLockImpl();
}
inline bool CMyRWLock::TryWriteLock()
{
return TryWriteLockImpl();
}
inline void CMyRWLock::Unlock()
{
UnlockImpl();
}
#endifRWLockImpl.cpp
#include "RWLockImpl.h"
CRWLockImpl::CRWLockImpl(): m_readers(0), m_writersWaiting(0), m_writers(0)
{
m_mutex = CreateMutex(NULL, FALSE, NULL);
if (m_mutex == NULL)
cout<<"cannot create reader/writer lock"<<endl;
m_readEvent = CreateEvent(NULL, TRUE, TRUE, NULL);
if (m_readEvent == NULL)
cout<<"cannot create reader/writer lock"<<endl;
m_writeEvent = CreateEvent(NULL, TRUE, TRUE, NULL);
if (m_writeEvent == NULL)
cout<<"cannot create reader/writer lock"<<endl;
}
CRWLockImpl::~CRWLockImpl()
{
CloseHandle(m_mutex);
CloseHandle(m_readEvent);
CloseHandle(m_writeEvent);
}
inline void CRWLockImpl::AddWriter()
{
switch (WaitForSingleObject(m_mutex, INFINITE))
{
case WAIT_OBJECT_0:
if (++m_writersWaiting == 1)
ResetEvent(m_readEvent);
ReleaseMutex(m_mutex);
break;
default:
cout<<"cannot lock reader/writer lock"<<endl;
}
}
inline void CRWLockImpl::RemoveWriter()
{
switch (WaitForSingleObject(m_mutex, INFINITE))
{
case WAIT_OBJECT_0:
if (--m_writersWaiting == 0 && m_writers == 0)
SetEvent(m_readEvent);
ReleaseMutex(m_mutex);
break;
default:
cout<<"cannot lock reader/writer lock"<<endl;
}
}
void CRWLockImpl::ReadLockImpl()
{
HANDLE h;
h = m_mutex;
h = m_readEvent;
switch (WaitForMultipleObjects(2, h, TRUE, INFINITE))
{
case WAIT_OBJECT_0:
case WAIT_OBJECT_0 + 1:
++m_readers;
ResetEvent(m_writeEvent);
ReleaseMutex(m_mutex);
assert(m_writers == 0);
break;
default:
cout<<"cannot lock reader/writer lock"<<endl;
}
}
bool CRWLockImpl::TryReadLockImpl()
{
for (;;)
{
if (m_writers != 0 || m_writersWaiting != 0)
return false;
DWORD result = TryReadLockOnce();
switch (result)
{
case WAIT_OBJECT_0:
case WAIT_OBJECT_0 + 1:
return true;
case WAIT_TIMEOUT:
continue;
default:
cout<<"cannot lock reader/writer lock"<<endl;
}
}
}
void CRWLockImpl::WriteLockImpl()
{
AddWriter();
HANDLE h;
h = m_mutex;
h = m_writeEvent;
switch (WaitForMultipleObjects(2, h, TRUE, INFINITE))
{
case WAIT_OBJECT_0:
case WAIT_OBJECT_0 + 1:
--m_writersWaiting;
++m_readers;
++m_writers;
ResetEvent(m_readEvent);
ResetEvent(m_writeEvent);
ReleaseMutex(m_mutex);
assert(m_writers == 1);
break;
default:
RemoveWriter();
cout<<"cannot lock reader/writer lock"<<endl;
}
}
bool CRWLockImpl::TryWriteLockImpl()
{
AddWriter();
HANDLE h;
h = m_mutex;
h = m_writeEvent;
switch (WaitForMultipleObjects(2, h, TRUE, 1))
{
case WAIT_OBJECT_0:
case WAIT_OBJECT_0 + 1:
--m_writersWaiting;
++m_readers;
++m_writers;
ResetEvent(m_readEvent);
ResetEvent(m_writeEvent);
ReleaseMutex(m_mutex);
assert(m_writers == 1);
return true;
case WAIT_TIMEOUT:
RemoveWriter();
default:
RemoveWriter();
cout<<"cannot lock reader/writer lock"<<endl;
}
return false;
}
void CRWLockImpl::UnlockImpl()
{
switch (WaitForSingleObject(m_mutex, INFINITE))
{
case WAIT_OBJECT_0:
m_writers = 0;
if (m_writersWaiting == 0) SetEvent(m_readEvent);
if (--m_readers == 0) SetEvent(m_writeEvent);
ReleaseMutex(m_mutex);
break;
default:
cout<<"cannot unlock reader/writer lock"<<endl;
}
}
DWORD CRWLockImpl::TryReadLockOnce()
{
HANDLE h;
h = m_mutex;
h = m_readEvent;
DWORD result = WaitForMultipleObjects(2, h, TRUE, 1);
switch (result)
{
case WAIT_OBJECT_0:
case WAIT_OBJECT_0 + 1:
++m_readers;
ResetEvent(m_writeEvent);
ReleaseMutex(m_mutex);
assert(m_writers == 0);
return result;
case WAIT_TIMEOUT:
default:
cout<<"cannot lock reader/writer lock"<<endl;
}
return result;
}
下边是测试代码
// MyRWLockWin32.cpp : 定义控制台应用程序的入口点。//
#include "RWLockImpl.h"
//创建一个读写锁对象
CMyRWLock g_myRWLock;
volatile int g_counter = 0;
//线程函数
unsigned int __stdcall StartThread(void *pParam)
{
int lastCount = 0;
for (int i = 0; i < 10000; ++i)
{
g_myRWLock.ReadLock();
lastCount = g_counter;
//在读锁域,两个线程不断循环交替访问全局变量g_counter
for (int k = 0; k < 100; ++k)
{
if (g_counter != lastCount)
cout<<"the value of g_counter has been updated."<<endl;
Sleep(0);
}
g_myRWLock.Unlock();
g_myRWLock.WriteLock();
//在写锁域,只有一个线程可以修改全局变量g_counter的值
for (int k = 0; k < 100; ++k)
{
--g_counter;
Sleep(0);
}
for (int k = 0; k < 100; ++k)
{
++g_counter;
Sleep(0);
}
++g_counter;
if (g_counter <= lastCount)
cout<<"the value of g_counter is error."<<endl;
g_myRWLock.Unlock();
}
return (unsigned int)0;
}
int main(int argc, char* argv[])
{
HANDLE hThread1, hThread2;
unsigned int uiThreadId1, uiThreadId2;
//创建两个工作线程
hThread1 = (HANDLE)_beginthreadex(NULL, 0, &StartThread, (void *)NULL, 0, &uiThreadId1);
hThread2 = (HANDLE)_beginthreadex(NULL, 0, &StartThread, (void *)NULL, 0, &uiThreadId2);
//等待线程结束
DWORD dwRet = WaitForSingleObject(hThread1,INFINITE);
if ( dwRet == WAIT_TIMEOUT )
{
TerminateThread(hThread1,0);
}
dwRet = WaitForSingleObject(hThread2,INFINITE);
if ( dwRet == WAIT_TIMEOUT )
{
TerminateThread(hThread2,0);
}
//关闭线程句柄,释放资源
CloseHandle(hThread1);
CloseHandle(hThread2);
assert (g_counter == 20000);
system("pause");
return 0;
}
欢迎转载,麻烦带上链接:http://blog.csdn.net/chexlong/article/details/7110060 谢谢合作!
作者:chexlong 发表于2011-12-28 21:27:40 原文链接
页:
[1]