多线程的那点儿事(之读写锁)
【 声明:版权所有,欢迎转载,请勿用于商业用途。联系信箱:feixiaoxing @163.com】在编写多线程的时候,有一种情况是十分常见的。那就是,有些公共数据修改的机会比较少。相比较改写,它们读的机会反而高的多。通常而言,在读的过程中,往往伴随着查找的操作,中间耗时很长。给这种代码段加锁,会极大地降低我们程序的效率。那么有没有一种方法,可以专门处理这种多读少写的情况呢?
有,那就是读写锁。
(1)首先,我们定义一下基本的数据结构。
view plain
[*]typedef
struct _RWLock[*]{[*] int count;[*] int state;[*] HANDLE hRead;[*] HANDLE hWrite;[*]}RWLock;
同时,为了判断当前的锁是处于读状态,还是写状态,我们要定义一个枚举量,
view plain
[*]typedef
enum
[*]{[*] STATE_EMPTY = 0,[*] STATE_READ,[*] STATE_WRITE[*]};
(2)初始化数据结构
view plain
[*]RWLock* create_read_write_lock(HANDLE hRead, HANDLE hWrite)[*]{[*] RWLock* pRwLock = NULL;[*]
[*] assert(NULL != hRead && NULL != hWrite);[*] pRwLock = (RWLock*)malloc(sizeof(RWLock));[*]
[*] pRwLock->hRead = hRead;[*] pRwLock->hWrite = hWrite;[*] pRwLock->count = 0;[*] pRwLock->state = STATE_EMPTY;[*] return pRwLock;[*]}
(3)获取读锁
view plain
[*]void read_lock(RWLock* pRwLock)[*]{[*] assert(NULL != pRwLock);[*]
[*] WaitForSingleObject(pRwLock->hRead, INFINITE);[*] pRwLock->counnt ++;[*] if(1 == pRwLock->count){[*] WaitForSingleObject(pRwLock->hWrite, INFINITE);[*] pRwLock->state = STATE_READ;[*] }[*] ReleaseMutex(pRwLock->hRead);[*]}
(4)获取写锁
view plain
[*]void write_lock(RWLock* pRwLock)[*]{[*] assert(NULL != pRwLock);[*]
[*] WaitForSingleObject(pRwLock->hWrite, INFINITE);[*] pRwLock->state = STATE_WRITE;[*]}
(5)释放读写锁
view plain
[*]void read_write_unlock(RWLock* pRwLock)[*]{[*] assert(NULL != pRwLock);[*]
[*] if(STATE_READ == pRwLock->state){[*] WaitForSingleObject(pRwLock->hRead, INFINITE);[*] pRwLock->count --;[*] if(0 == pRwLock->count){[*] pRwLock->state = STATE_EMPTY;[*] ReleaseMutex(pRwLock->hWrite);[*] }[*] ReleaseMutex(pRwLock->hRead);[*] }else{[*] pRwLock->state = STATE_EMPTY;[*] ReleaseMutex(pRwLock->hWrite);[*] }[*]
[*] return;[*]}
文章总结:
(1)读写锁的优势只有在多读少写、代码段运行时间长这两个条件下才会效率达到最大化;
(2)任何公共数据的修改都必须在锁里面完成;
(3)读写锁有自己的应用场所,选择合适的应用环境十分重要;
(4)编写读写锁很容易出错,朋友们应该多加练习;
(5)读锁和写锁一定要分开使用,否则达不到效果。
页:
[1]